Institute for Technologies and Management of Digital Transformation

Prof. Dr.-Ing. Tobias Meisen

Professor für Technologien und Management der Digitalen Transformation

Forschungsinteressen:

  • Deep and Machine Learning
  • Deep Reinforcement Learning
  • Explainable and Transparent Artificial Intelligence
  • Knowledge Graphs
  • Semantic Interoperability

Biographie

Univ.-Prof. Dr.-Ing. Tobias Meisen ist seit September 2018 Professor für Technologien und Management der Digitalen Transformation an der Bergischen Universität Wuppertal. Er studierte Informatik mit dem Schwerpunkt auf Data Mining und Datenmanagement und wurde zum Dr.-Ing. mit Auszeichnung promoviert. Von 2015 bis 2018 war er Juniorprofessor an der RWTH Aachen University, wo er unter anderem im DFG-Exzellenzcluster „Integrative Produktionstechnik für Hochlohnländer“ forschte und als Geschäftsführer des Instituts für Informationsmanagement im Maschinenbau tätig war.

In seiner Forschung beschäftigt sich Tobias Meisen mit der digitalen Transformation und dem modernen Informationsmanagement in einer zunehmend vernetzten Welt. Ein besonderer Fokus liegt auf der Entwicklung von datengetriebenen Systemen, die auf Methoden des Machine Learning und Deep Learning basieren und gezielt für industrielle Anwendungen konzipiert sind. Anders als viele klassische KI-Ansätze, die auf große, zentral verfügbare Datenmengen setzen, adressiert seine Forschung die Herausforderungen realer industrieller Umgebungen, in denen Daten oft verteilt, heterogen oder unvollständig vorliegen. Ziel ist es, auch unter diesen Bedingungen robuste, lernfähige Systeme zu schaffen, die Prozesse automatisieren, Entscheidungen unterstützen und neue Formen der Mensch-Technik-Interaktion ermöglichen. Ergänzend dazu befasst er sich mit der strukturierten Erfassung, Integration und Verwaltung von Daten durch den Aufbau von Knowledge Graphs, die als Grundlage für transparente, nachvollziehbare und adaptive industrielle KI-Systeme dienen.

Tobias Meisen ist Sprecher des Interdisziplinären Zentrums für Machine Learning and Data Analytics (IZMD) der Bergischen Universität Wuppertal und Vorstandsvorsitzender des In-Instituts für Systemforschung der Informations-, Kommunikations- und Medientechnologie (SIKoM). Zudem ist er Mitglied im wissenschaftlichen Beirat des Center for Advanced Internet Studies (CAIS). Seit Februar 2025 bringt er seine wissenschaftliche Perspektive als sachverständiges Mitglied in die Enquetekommission „Künstliche Intelligenz – Für einen smarten Staat in der digitalisierten Gesellschaft“ des Landtags Nordrhein-Westfalen ein.

Als Mitgründer der HotSprings GmbH, die später in die umlaut integriert wurde und heute Teil von Accenture ist, verfügt Tobias Meisen über langjährige Erfahrung an der Schnittstelle von Wissenschaft, Technologieentwicklung und Anwendung. Für seine Arbeiten wurde er mehrfach ausgezeichnet, unter anderem mit Best Paper Awards und dem Young Researcher Award im Rahmen der ersten Förderphase der Exzellenzinitiative. Er ist Autor und Mitautor zahlreicher wissenschaftlicher Publikationen und engagiert sich kontinuierlich in nationalen und internationalen Forschungs- und Entwicklungsprojekten gemeinsam mit Partnern aus Wissenschaft und Industrie.

Publikationen

2018
Otte, T., Metzner, N., Lipp, J., Schwienhorst, M., Fenollar Solvay, A., & Meisen, T. (2018). "User-centered Integration of Automated Air Mobility into Urban Transportation Networks" , 2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC) , 1—10.
Ionita, A., Pomp, A., Cochez, M., Meisen, T., & Decker, S. (2018). "Where to Park? Predicting Free Parking Spots in Unmonitored City Areas" in Proceedings of the 8th International Conference on Web Intelligence, Mining and Semantics , Akerkar, Rajendra and Ivanovi\'c, Mirjana and Kim, Sang-Wook and Manolopoulos, Yannis and Rosati, Riccardo and Savi\'c, Milos and Badica, Costin and Radovanovi\'c, Milos, Eds. New York : ACM 1—12.

ISBN: 9781450354899

2017
Kuschicke, F., Thiele, T., Meisen, T., & Jeschke, S. (2017). "A Data-based Method for Industrial Big Data Project Prioritization" , Proceedings of the International Conference on Big Data and Internet of Thing - BDIOT2017 , 6—10.
Wang, Y., Tercan, H., Thiele, T., Meisen, T., Jeschke, S., & Schulz, W. (2017). "Advanced Data Enrichment and Data Analysis in Manufacturing Industry By an Example of Laser Drilling Process" , 2017 Itu Kaleidoscope: Challenges for a Data-Driven Society (Itu K) .
Antkowiak, D., Luetticke, D., Langer, T., Thiele, T., Meisen, T., & Jeschke, S. (2017). "Cyber-Physical Production Systems: A Teaching Concept in Engineering Education" , 2017 6th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI) , 681—686.

zuletzt bearbeitet am: 20.05.2025