Publikationen des TMDT
- 2021
- Meyes, R., Hütten, N., & Meisen, T. (2021). "Transparent and Interpretable Failure Prediction of Sensor Time Series Data with Convolutional Neural Networks" , Procedia CIRP , 104 , 1446—1451.
- Langer, T., & Meisen, T. (2021). "Visual Analytics for Industrial Sensor Data Analysis" in Proceedings of the 23rd International Conference on Enterprise Information Systems , SciTePress 584—593.
ISBN: 978-989-758-509-8
- Bitter, C., Tercan, H., Meisen, T., Bodnar, T., & Meisen, P. (2021). "When to Message: Investigating User Response Prediction with Machine Learning for Advertisement Emails" in 2021 4th International Conference on Artificial Intelligence for Industries (AI4I) , IEEE 25—29.
ISBN: 978-1-6654-3410-2
- 2020
- Horn, G., & Schönefeld, K. (2020). "AI for Future Mobility: What Amount of Willingness to Change Does a Society Need?" in Proceedings of the 9th International Conference on Smart Cities and Green ICT Systems - Volume 1: SMARTGREENS , SciTePress 38—43.
ISBN: 978-989-758-418-3
- Bellgardt, M., Scheiderer, C., & Kuhlen, T. W. (2020). "An Immersive Node-Link Visualization of Artificial Neural Networks for Machine Learning Experts" in 2020 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR) , IEEE 33—36.
ISBN: 978-1-7281-7463-1
- Pomp, A. (2020). Bottom-up Knowledge Graph-based Data Management (1. Auflage). Düren : Shaker.
ISBN: 9783844075311
- Steiniger, Y., Stoppe, J., Meisen, T., & Kraus, D. (2020). "Dealing With Highly Unbalanced Sidescan Sonar Image Datasets for Deep Learning Classification Tasks" in Global Oceans 2020: Singapore — U.S. Gulf Coast , IEEE 1—7.
ISBN: 978-1-7281-5446-6
- Scheidt, F., Ou, J., Ishii, H., & Meisen, T. (2020). "deepKnit: Learning-based Generation of Machine Knitting Code" , Procedia Manufacturing , 51 , 485—492.
- Meyes, R., Schneider, M., & Meisen, T. (2020). "How Do You Act? An Empirical Study to Understand Behavior of Deep Reinforcement Learning Agents" .
- Meisen, T., Pomp, A., & Hoffmann, M. (2020). "Industrial Big Data: Modernes Informationsmanagement in der Produktion" in Big Data: Anwendung und Nutzungspotenziale in der Produktion , Steven, Marion and Klünder, Timo, Eds. Stuttgart : Verlag W. Kohlhammer .
ISBN: 3170364766
- Hees, F., Horn, G., & Schönefeld, K. (2020). "Integration von Produktion in den urbanen Raum" in Nachhaltige Stadt , München : ALTOP Verlags- und Vertriebsgesellschaft für umweltfreundliche Produkte mbH .
ISBN: 3925646728
- Baer, S., Turner, D. C., Mohanty, P. K., Samsonov, V., Bakekeu, J. R., & Meisen, T. (2020). "Multi Agent Deep Q-Network Approach for Online Job Shop Scheduling in Flexible Manufacturing" in Proceedings of the 7th International Conference on Industrial Engineering and Applications (ICIEA) .
- Gannouni, A., Samsonov, V., Behery, M., Meisen, T., & Lakemeyer, G. (2020). "Neural Combinatorial Optimization for Production Scheduling with Sequence-Dependent Setup Waste" in IEEE International Conference on Systems, Man, and Cybernetics (SMC) .
- Pomp, A., Kraus, V., Poth, L., & Meisen, T. (2020). "Semantic Concept Recommendation for Continuously Evolving Knowledge Graphs" in Enterprise Information Systems , Filipe, Joaquim and Smialek, Michal and Brodsky, Alexander and Hammoudi, Slimane, Eds. Cham : Springer International Publishing AG 361—385.
ISBN: 978-3-030-40783-4
- Scheiderer, C., Thun, T., Idzik, C., Posada-Moreno, A. F., Krämer, A., Lohmar, J., Hirt, G., & Meisen, T. (2020). "Simulation-as-a-Service for Reinforcement Learning Applications by Example of Heavy Plate Rolling Processes" , Procedia Manufacturing , 51 , 897—903.