Introduction to Industrial Transfer Learning
Motivation

Challenges for machine learning in manufacturing

- Dynamic processes → high training effort
- Insufficient data → representative and reliable data required
Industrial Transfer Learning

Challenges for Machine Learning in Production

- One key requirement of successful ML: representative and reliable data basis
- Main data sources in production have advantages and disadvantages regarding costs and data quantity

Running Production
- High quantity
- Little variation
- Highly optimized

Test Environment
- Small quantity
- High variation
- High costs

Simulation (Experiments)
- Simplification
- High variation
- Low costs

How to learn from different domains?
Industrial Transfer Learning

Challenges for Machine Learning in Production

Process variations lead to high learning effort for AI
e.g. new product, other material, tool change, new machine

Product A
New Data & Training

Product B
New Data & Training

Product C
New Data & Training

How to overcome process variations?
Industrial Transfer Learning

Transfer Learning – An Emerging Paradigm

What is Transfer Learning?

Traditional ML: learning a problem from scratch

Transfer Learning: use of existing knowledge

Result: faster learning process with less target data

“Transfer learning will be the next driver of ML success.”
Andrew Ng, NIPS 2016 keynote

Use Cases of Deep Transfer Learning

<table>
<thead>
<tr>
<th>Self-Driving Cars</th>
<th>Robotics</th>
<th>Music Classification</th>
<th>Computer Vision</th>
<th>Natural Language Processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of simulation environment to train artificial intelligence</td>
<td>Pretraining in simulation for grasping and manipulation</td>
<td>Use of large datasets for classifying music genre</td>
<td>Transfer of pattern recognition (e.g. edges, objects) to new images</td>
<td>Use of pretrained language models for specific NLP tasks</td>
</tr>
</tbody>
</table>
Industrial Transfer Learning

Industrial Transfer Learning – A Definition

In the field of production, **industrial transfer learning** refers to **machine learning methods** and techniques that make use of **source data** from different production **process domains** or **process variations** with the goal to create **robust, accurate and data efficient models** for a certain **target task**.

![Diagram showing the process domain and process variation]

- **Process domain**:
 - Real Machine
 - Pre-production
 - Expert Knowledge
 - Simulation

- **Process variation**:
 - Product
 - Material
 - Tool
 - Machine
Industrial Applications

Simulation to Reality Transfer for Predictive Quality
Simulation to Reality Transfer for Predictive Quality

Predictive Quality in Injection Molding

- Supporting process designers in the **initial set-up** of a machine by **predicting quality criteria** from **machine parameters**

- Increasing data efficiency by **transfer learning from simulation to real world**

- Conducting design of **experiments** on **real machine** and **simulation** with six parameters

- Cavity Temperature
- Cooling Time
- Melt Temperature
- Quality (part weight)
- Injection Time
- Holding pressure level
- Holding pressure time

Plate Specimen
Simulation to Reality Transfer for Predictive Quality

Bridging the Reality Gap

Transfer Learning
- Pretraining in simulation (Cadmould 3D-F)
- Finetuning of the network

Model Training
- Neural network with two hidden layers with 40 neurons
- Activation function: tanh
Successful Transfer

Use of simulation data improves prediction models for real process

Improvement in accuracy by factor of 3
Reduction of learning effort (iterations) by 80%

Reduction of Training Effort

<table>
<thead>
<tr>
<th>Transfer</th>
<th>Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number of Training Iterations

Increasing Data Efficiency

<table>
<thead>
<tr>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without Transfer</td>
</tr>
<tr>
<td>Transfer</td>
</tr>
</tbody>
</table>

Number of Real Experiments
Continuous improvement of model by new simulated experiments

- AI bridges the gap between simulation and real manufacturing process
- Use for automated design in production line
- In case of uncertain predictions:
 - Automatic triggering of new experiments in simulation
 - Transfer of newly gained knowledge to real process
Industrial Applications

Continual Learning of a Predictive Quality Model
Predicting quality criteria from machine parameters by means of a neural network

Production of a new product variants
Changes in geometry and process behavior
➢ Predictions no longer work
➢ Requires training of a new prediction model

Difference of quality for different products

- Cavity Temperature
- Cooling Time
- Melt Temperature
- Injection Time
- Holding pressure level
- Holding pressure time

Quality (Deformation)
Use of Previous Knowledge for Transfer

Continual Learning of Predictive Quality Model

Learning without forgetting

Amount of data decreases
Learning capability increases

Product 1

Transfer

Product 2

Transfer

Product 3

Transfer

Product 4

Transfer
Continual Learning of Predictive Quality Model

Incremental Learning without Forgetting

- Finetuning
- Retuning

Learning without forgetting

Process specific, product specific

Product 1
Product 2
Product 3
Continual Learning of Predictive Quality Model

Improving Efficiency and Learning

Improved Performance
- Continual learning approach keeps up performance
- Traditional approach becomes worse with every product

Improved Data Efficiency
- Number of required training data is reduced for every product
- Prediction model can generalize better to new parts

![Graph showing performance and training data for products](image)

- **Performance**
 - Continual Learning
 - Learning from Scratch

- **# Training Data**
 - Continual Learning
 - Learning from Scratch

18 Industrial Transfer Learning
Chair of Technologies and Management of Digital Transformation, University of Wuppertal
Industrial Applications

Sim2Real Transfer for Reinforcement Learning in Robotics
Reinforcement Learning

Automated Trial-and-Error by Learning AI Model

- AI agent learns by means of interactions with its environment
 - Agent observes state
 - Agent chooses action
 - Environment issues reward

- Actor-critic architecture
 - Critic: learns the action-value function
 - Actor: specifies the current policy

- Deep Deterministic Policy Gradient (DDPG).
 - Used for a number of continuous control tasks in simulated environments
Use of DDPG in the Real World

- The wire loop game as an easy-to-control sandbox scenario.
 - **State**: camera images, **Action**: three degrees of freedom (forward, sideways, rotation), **Reward**: contact between fork and wire

High training effort on real industrial robot!
Sim2Real Transfer for Reinforcement Learning in Robotics

Transfer Learning with Domain Randomization

- Training in real robotic environment is time consuming and costly
- Solution: transfer learning from simulation to the real world
- Creating robust AI by randomizations in simulation

Randomizations: Camera position and rotation, color, texture, noise
Sim2Real Transfer for Reinforcement Learning in Robotics

Results

- Improving performance: number of errors in real environment is drastically reduced
- Cost savings: reduction of real iterations with robot for training by 70%

Higher Reliability

With transfer: attention of agent lies on correct areas in image (red area)

<table>
<thead>
<tr>
<th>Input Image</th>
<th>Without Transfer</th>
<th>Transfer Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Your Contact Person:

Hasan Tercan, M.Sc.
Tel: +49 (0)202 439 1153
tercan@uni-wuppertal.de

Chair for Technologies and Management of Digital Transformation
Univ. Prof. Dr. Ing. Tobias Meisen
www.tmdt.uni-wuppertal.de
Campus Freudenberg
Rainer-Gruenter-Str. 21
D-42119 Wuppertal
Germany

University of Wuppertal
School of Electrical, Information and Media Engineering